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Types of signals on graphs

Social networks Electrical networks

bblbbhlbbLlovrataos
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Environmental
monitoring
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Modeling signals on graphs
Edge connectivity/weight <-> similarity between vertices.

Known connectivity
» Social media

» Sensor networks JJ'
> Traffic networks | l By l
» 3D point clouds &
L
Unknown connectivity The height of each blue bar
> Neuronal networks represents the signal value at the
vertex.

> Internet/ WWW
» Gene regulatory networks
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Why analyze signals on graphs

» Epidemiological data describing the spread of disease
* Census data describing human migration patterns
* Logistics data describing inventories of trade goods

* Anatomical connectivity of distinct functional regions of the cerebral
cortex

* Cluster different genes based on their phenotype/participation in
metabolism

* Classify human activity from depth sensors

N Institute of Computer Science



Why

Common data processing tasks:
* Filtering

* Denoising

* Inpainting

* Compression

Challenges
 What is translation over a grah ?
* What is downsampling over a graph ?
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Lattice Graph Scale-Free Graph Random Graph
.......... . .

Types of graphs :::iiiiiin fesii e

* Erdos-Renyi graphs, BEESSEREE AR TR

* ring graphs,
 Random geometric graphs,

small-world graphs,

power-law graphs,

nearest-neighbor graphs,

scale-free graphs

Regular Small-world
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Regular graph structures

1D Tlme-Serles Spring day in Philadelphia

70 | | | | |

* Nodes <-> time instances *?%%

* Edges are unweighted and directed s 0 o % h

2D images E a0 |-

* Nodes <-> pixel 3D.TTTTﬂ IT
0 4 g8 12 16 20 24

* Edges <-> similarity

Time of day (hours)
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Signals on Graphs

Graphs: generic data representation forms encoding the geometric structures
of data

Applications: social networks, energy distribution networks, transportation
network, wireless sensor network, and neuronal networks.

C={V.EW weights: distance /similarity/relationship
. - 2
2;’21” ) if dist (7, j) =<k

weighted

[dist

vertices edges adJac.ency Wij = [EXD(
matrix 0

otherwise,

Assumptions
1. Undirected graphs without self loops.

2. Scalar sample values

Spring Semester 2019
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Modeling the graph

Undirected graph Degree matrix: D Adjacency matrix: A Laplacian matrix: L
20000 0\ 010010 5 1 0 0 -1 0

e 030000 101010 1 3 -1 0 -1 0
oe 002000 010100 0 -1 2 -1 0 0

‘o 00030 0 001011 0 0 -1 3 -1 -1

e 0000230 1 10100 -1 -1 0 -1 3 0

e 00000 1) 000100 0 0 0 -1 0 1

The adjacency matrix is a matrix, A, such that A;; = w;;.
if the graph is undirected, w;; = w;;, and A is symmetric

The degree matrix of G is a diagonal matrix, D,
with entries (D);; = Zj.vzl A;; and (D);; = 0 for ¢ # 7,

The combinatorial graph Laplacian defined as L=D — A,
and the symmetric normalized Laplacian £ = D~1/2LD~1/2.
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http://en.wikipedia.org/wiki/Labeled_graph

Signals on Graphs
Graph signal fin RN, where |V|=N

X0

l) | Xo _0.7_

Graph Laplacian L:= D — W. , D: diagonal with sums of weights

W: weight matrix
Normalized Graph Laplacian £ = D~1/2LD~1/2

Spring Semester 2019
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The z transform

Consider N samples of a signal s,,, n =0,1,--- ,N — 1
of finite number N of samples and to filters
with finite impulse response (FIR filters)

The z-transform s(z) of the time signal
s={s,:n=0,1,--- , N — 1} organizes its samples s,
into an ordered set of time samples, where sample s,
at time n precedes s, 11 at time n + 1

and succeeds s,,_1 at time n — 1.

In other words, the signal is given by the
N-tuple s = (sg,51, "+ ,SN_1)-

Spring Semester 2019
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The z transform

This representation is achieved by using a formal variable z—1

called the shift (or delay), so that the signal of N-samples

is represented by
N-1
— E Sn2 .
n=0

Spring Semester 2019
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The DFT transform

The discrete Fourier transform (DFT) of the signal s
iss={sy: k=0,---,N — 1} given by

27
N kn

| N1
Sp = —— spe
SR

The 53 are the Fourier coefficients of the signal.

The discrete frequencies are {2, = %, k=0,1,--- N —1,
and the N signals (zx[n])

Spring Semester 2019 13




The DFT transform

The signal is recovered from its Fourier coeflicients
by the inverse DFT:

1 N—1

~ 2T kn
Sy = —— spe! ¥ s =0,1,--- ,N — 1.
P>
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FIR filters

An FIR filter is also represented by a polynomial in z~*

N-1
h(z) = Z hnz™",
n=0
so that the output s.,¢ of filter A applied to signal s;, is:

Sout(2) = h(2) - sin(2).

Defining the shift or delay filter hgpnig(2) = 271,
and applying it to a signal s;, = (sg, 1, ,Sn_1) produces:

Sout = Pshift * Sin = (SN—1,80, Sty 73N—2) .

Spring Semester 2019
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Shift invariance

The series combination of filters is commutative,

a filter commutes with the shift filter—delaying the input signal
and then filtering the delayed input signal

leads to the same signal as first filtering the input signal s;,
and then delaying the filtered output.

2 Hoh(2) =h(z) -2t
Writing the signal s = (s, s1, -+ ,Sny_1) as the vector
s=[sgs1 - sN_l]T e CV,
and a filter h as a matrix H, filtering can be written as

Sout = H . Sin

Spring Semester 2019
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Shift filtering operation

The shift filtering operation corresponds to multiplication

by a circulant matrix A.

[SN—ISO ...

given by the cyclic shift

0 0 0
10 0
01 0
A.=
00 - 1
00 - 0

0
0
0

0

0
0
0
0
0

sn_a] =Ae-[sos1 -

/' FORTH
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Shift operation in 1D time graphs

o000
0 1 N-2 N-1

S0 S1 SN-—2 SN-1

The 0-1 shift matrix A, as the adjacency matrix of a graph.
Labeling the rows and columns of A; from 0 to N — 1,
define the graph G, = (V, F) with node set V' ={0,1,--- ,N — 1}.

Spring Semester 2019
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Shift invariance

A filter represented by H will be shift invariant
if it commutes with the shift: AH = HA

In GSP, filters are defined as matrices and the eigensignals of h
are the eigenvectors of the corresponding H.

Under certain conditions, every filter commuting with A
is a polynomial in A, i.e. H= h(A)

Then H = h(A) = VA(A)V~!, where A = VAV !

Spring Semester 2019
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Graph Fourier Transform (GFT)

The graph Fourier transform of graph signal s is given by
the graph Fourier analysis decomposition

s=Fs=V !ls=[fys--- fN_ls,]T

The graph Fourier coefficients or graph spectral coefficients
of signal s are computed using the inner product as

§(Ak) — §k — ka — <f,f,s>

The inverse GF'T is given by

Spring Semester 2019
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Filters on graphs

@ Theorem: Let A be the graph adjacency matrix and assume that its
characteristic and minimal polynomials are equal: pa(x) = ma(x).
Then, a graph filter H is linear and shift invariant if and only if (iff) H
Is a polynomial in the graph shift A, i.e., iff there exists a polynomial

h(x) = ho + hix+ ...+ hxt
with possibly complex coefficients h; € C, such that:
H=h(A)=hl+mA+...+ hA"

@ The coefficients h; in the polynomial h(x) are called the graph filter
taps.

SN s
Spring Semester 2019 @E&Z\v’% CS-570 Statistical Signal Processing ?.";’i 3 FORTH 21
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Filtering in Graph Frequency domain

Given the adjacency matric A = VAV ™!

The graph filter can be expressed as H=h(A)
=h(VAV )
M -1

= hn(VAVHT
m=I(

= Vh(A) V1,

where /i (A) is the diagonal matrix

h(A) = diag [ (Ao) -~ B (Aw—1)].

Spring Semester 2019
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Filtering in Graph Frequency domain

The output of s;,, to filter h is successively

Sout — H - Sin

= Vi (A) (V1 si)
w
Fourier transf.
= Vdiag [ (Xo) - h (An=1)] Sin
“

Filtering in graph Fourier space
— V [h (,/\() ) Sin() T h’ (/\J’\T—l ) SinN_l .
“

Inverse Fourier transf.

]T

Spring Semester 2019
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Using the Graph Laplacian

A frequency representation can be similarly built
on top of the Laplacian matrix of an undirected graph.

Since this matrix is positive semidefinite,

all the eigenvalues are real and non-negative,

and a full set of orthogonal eigenvectors can be obtained,
so that we can write

L=UAU'
with U the GFT matrix, which is real and orthogonal.

Because the eigenvalues are real, they provide a natural way
to order the GF'T basis vectors in terms of frequency.

Spring Semester 2019
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GFT cont’d

» Graph Fourier Transform

N
L=UAU" =) \uu/,
1=1

» GFT : projection onto the eigenvectors of the graph Laplacian
x =Ulx

* Inverse GFT: x = Ux

* The graph Laplacian eigenvectors associated with low frequencies
vary slowly across the graph

* The eigenvectors associated with larger eigenvalues oscillate more
rapidly

' FORTH
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Graph Laplacian

1,400

_.
n
o
o

Spectral properties Lu; = Aquy,

1,000

800

* Laplacian is Positive Semi-definite matrix
* Eigenvalues: 0=A (L) S A\, (L) £ ... S A 4(L)

600

400 &

200 'S

Number of Zero Crossings

TN

* Eigen-pair system {A,,u,} provides Fourier-like
interpretation (GFT)

Low frequency High frequency

FORTH

Institute of Computer Science
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Eigenvectors of Graph Laplacian

(a)A =0.00 (b) A =0.04 (c)A=0.20

(d)A =0.40 (e)A=1.20 Hr=1.49

Spring Semester 2019
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Importance

For connected graphs, the Laplacian eigenvector ugy associated

with the eigenvalue 0 is constant and equal to \/Lﬁ at each vertex.

The graph Laplacian eigenvectors associated with low frequencies
vary slowly across the graph.

If two vertices are connected by an edge with a large weight,

the values of the eigenvector at those locations are similar.

The eigenvectors associated with larger eigenvalues

oscillate more rapidly and are more likely to have

dissimilar values on vertices connected by an edge with high weight.

Spring Semester 2019
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Example

Fig. 2. Three graph Laplacian eigenvectors of a random sensor network
graph. The signals” component values are represented by the blue (positive)
and black (negative) bars coming out of the vertices. Note that usp contains
many more zero crossings than the constant eigenvector ugp and the smooth
Fiedler vector uj.

. FORTH .
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Estimating the underlying graph

Ve

Gy

Uz s e

D~

e Y6

* One signal <-> many differentgra-[ohs

* Only 1 leads to a smooth graph signal.

» Only G, favors smoothness of the resulting graph signal.

.8
A 0B
f(4,)
! 0.4
0.2
W oog Y 15"z 28 3 35 4 as
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Graph smoothness

- N "
Graph based approximation  £(1,):=(f, u,) = Z f(7)uo (7).
i=1

Smoothness w.r.t. graph | { |/ :=]| L7 lo = VETLf =S (f).

Graph spectral filtering mfin { " f — V ”:: + }/Sp (f) }
(regularization) l

argmin{|f — y|3 + yf" Lf}.
f
Connectivity of the graph -> encoded in graph Laplacian

Define both a graph Fourier transform (graph Laplacian eigenvectors)

Different notions of smoothness

Spring Semester 2019
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@ ) PR
(a)
1 _€> | 1 1 1 1 1 L L L _ 1 B 1 (l} 1 L L L L L | _ 1 | 1 1 1 1 1 1 Li 1 1
0.8 H - 08} - 0.8} 9
% 0.6 H . § 06 F . §, 0.6
= 04H 1™ 04}t 1 ™ 04t
0.2 H . 02} i 0.2} T
0 1 4 1 1 1 ' [ L L OC' A I,S)I 1 A i L 1 0(-' ?IT 1 1 1 T 1 ?D 1 1
0 1 > 3 4 5 o 1 2 3 4 5 0o 1 2 3 4
A Ay vy

fTL:f=0.14, {fLf=131, fL:f =181
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Total variation

* TV: Difference between two consecutive signal samples

TV(s) = ) [$n — sn1l-

* TV over graphs  "T'V/( ) = ||S — CSHl

Where Cis the cyclic permutation matrix A =C =

* |t measures of similarity between a graph signal and its shifted
version

e Gradient ﬁ =V,.(8) = s, — Z Anorm

l"‘ n,m Sm
AV,

Anorm _— _ 1 A

CS-570 Statistical Signal Processing FORTH 33
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Alternative view of TV

* The total variation of a vector X on a graph can also be defined as

TV, : |I¥| = (xTLx)"?

e Substituting the inverse GFT x = UX , we get

TV? =x'Lx =x'A Z (3)||?

* Such that z(7)| <

Spring Semester 2019
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Filtering over graphs
The graph frequency A,, is larger than graph frequency A, if

TVg (Vm) > TVa (Vg) .

Assuming the graph frequencies have been ordered
from low to high, graph signal s is low-pass if its graph
Fourier coefficients are zero for Q, k > /,

for some /£, 0 </ < N — 1.

We can similarly define band- and high-pass signals and filters.

Spring Semester 2019

CS-570 Statistical Signal Processing “ FORTH 35
N : Institute of Computer Science



Graph filters

* A graph filter is a system H() which takes a signal s and produces
another signal s = H(s) at the output.

* The graph shift filter is a local operation that replaces a signal value s,
at node v, with the linear combination of values at the neighbors of
node v,

* Hence, the output of the graph shift is given by the product of the
input signal with the adjacency matrix of the graph:
]T

S = [50 i .§N_1 = AS.

N Institute of Computer Science



Graph filter

All linear shift-invariant graph filters in DSG
are polynomials in the adjacency matrix A of the form

h(A) = hol + hiA+ ...+ hp AL
The output of the filter is the signal s = H(s) = h(A)s

The GFT of a graph signal s is s = F's,
where F = V! is the graph Fourier transform matrix
obtained by A = VJV 1

The values s,, of the signal’s graph Fourier transform
characterize the frequency content of the signal s.

Spring Semester 2019
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Graph spectral filtering

N N-1
GFT: f(0) = (xe, /) =D _xi(Df(@)  f(i)= D f(O)xe(d)
i=1 =0

GFT @ IGFT —
=) | f(0) GO\ F(0)| Y |16 =3 s00fEx )

£=0

Spring Semester 2019
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Graph spectral filtering

GFT- f(f) =

GFT

f | =y

Spring Semester 2019

(xe, f)

X' f

G(Ao)

0

Eijikf i)f(i)

Fat

g

(A" f
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Example

Laow frequenc ies High frequenc e

L5 L

ORTH 40

itute of Computer Science
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Denoising signals over graphs

* Let t=x+w be the measured signal where x is the true signal and w is
the noise.

* Impose graph signal smoothness in quadratic form

|

So(x) = 5 [x — A x||5
. . il b J‘ 2 |
e Denoising X = argmin 3||}{ —t||5+a Sa(x).
o (1 .
* Gradient of objective 7% | gllx—tllataS2(x)
1 0 . . *
= 55((x—t) (x—t)+ax*(I-A)"(I-A)x)

— (x—t)+a(I-A)*(I-A)x,

X=(I+a(I-A)(I—A)) 't.

CS-570 Statistical Signal Processing :5}.;:‘:' FORTH
X Institute of Computer Science
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Denoising example

Temperature field

48
30
46}
28
a4t
= 126
[
k<)
8 42f
2
3 —\ \/\ L 24
(7
\?\; : 22
38F /Tf/l i
A z
/ 0
36 L L L L L L
6 8 10 12 14 16 18 20
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Noisy signal

A
/ v/7

Il Il Il Il Il Il
8 10 12 14 16 18
Longitude (deg)
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Denoising example

Reconstruction with 2 eigenvectors

. a8
27
35
J wl ‘ 1 265
N/ %, W
B AN 'S :
44t F® “r ‘ 7
) _ 125.5
g .
g a2 \m| L il 7 n
: NBW - 1
/ L d
40t \‘%k"ﬂ \élél B

)§ 20 “ 7 24

38 O—Vh/ \/7 381 b 235
\7‘ 15 23
: : ‘ 36 : : ‘ : ‘ ‘

Il Il
8 10 12 14 16 18 20 6 8 10 12 14 16 18 20
Longitude (deg)
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Denoising example

Noisy temp. field Reconstruction with 24 eigenvectors

48 48

Latitude (deg)

30

28

26

124

122

20

18

16

36

36 Il Il Il Il L L ] L L L L L L
6 8 10 12 14 16 18 20 6 8 10 12 14 16 18
Longitude (deg)
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Spatial Signal Graphs

1-hop averaging transform 1-hop difference transform
1 1 -
vl = - n;l Aln. m]x[m] yinl = - mZ::I Aln. m](x[n] — x[m])

— D 'Ax = P, x y = LiwX =X — PuX

Spring Semester 2019
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Find structure in data

Any structure?
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Find structure in data

m Signal f comprised of three different graph Laplacian eigenvectors
(U10, Ua7, Us) restricted to the three different clusters of vertices

Red Blue Green
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Product graphs

< A\ xl

0 Intercommunity Community
O 0 O U communication structure
Social network with communities structure

Digital image

Measurements of one sensor

: =
£ o
= &=
E o
i E —
w =
5 = —
WL
e I
i =
=
—
e~

X

Sensor network measurements Sensor network Time series

ORTH 13
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Spectral anomaly detection in WSN

Decomposition of Laplacian L, = UGAGU‘E

Alternative approach |}, ( EG ) — UG ( h (:AG ) )UtC
. (1=l d)l,)° D(i. j)"
Graph construction [w; ;], = exp (_ Ao 1 cexp | — Az

Data fitin graph o] = s°[u] X] where s?[p] is the sample variance

C ¢ C ¢

| i o?

Target ratio arg max E —  subject to E — < 0
c e Op

Spring Semester 2019
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True Positive Rate

Global

ek g e e L an e
B s St ;_-,-.-'1 B et L S e e
..
,-‘.-l
08 .. _
v
! - B e e AT
- i /‘E.Tn oY
0.6 T
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" : CB(20 clusters) - -
04 - o i CB(60 clusters) B ]
; GBF,(0, = 00, = 0.95) -t
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False Positive Rate
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Robust PCA on graphs

Low Rank U

Q

Data X with corruptions

n samples G5 : Graph of feature s1m11ar1ty

an
>

class 1

Laplaci

\

min IX = Ully + 1te(ULUT) + 3o te(UT LU

Ry

L]

p features ’

Class 2

*

p—
l

¥y $

Laplacian £,

SVD: U =VEW '
&
Clustering on W

Principal Component 2

w
*

| G, : Graph of data similarity

———
Principal Component 1
Main idea of Fast Robust PCA on Graphs
min | X —Ully + 7 tr(U £, UT) +ytr(UT Ly U).
min |5y + 7 te(U £y U +mtr(UT L, U),
s.t. X =U+ 5,
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Background Separation from Videos via PCA
RPCAG
e
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Reading material

* Ortega, Antonio, et al. "Graph signal processing: Overview,
challenges, and applications." Proceedings of the IEEE 106.5 (2018):

808-828.

* Shuman, David I., et al. "The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and
other irregular domains." arXiv preprint arXiv:1211.0053 (2012).

 Sandryhaila, Aliaksei, and José MF Moura. "Discrete signal processing
on graphs." IEEE transactions on signal processing 61.7 (2013): 1644-

1656.
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